963 resultados para Detoxification enzymes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies indicate that consumption of cruciferous vegetables (CV) can reduce the risk of cancer. Supposed mechanisms are partly the inhibition of phase I and the induction of phase II enzymes. The aim of this study was to investigate in vitro and in vivo effects of watercress (WC), a member of the CV family, on chemopreventive parameters using human peripheral blood mononuclear cells (PBMC) as surrogate cells. We investigated the hypothesis that WC reduces cancer risk by inducing detoxification enzymes in a genotype-dependent manner. In vitro gene expression and enzyme activity experiments used PBMC incubated with a crude extract from fresh watercress (WCE, 0.1-10 mu L/mL with 8.2 g WC per 1 mL extract) or with one main key compound phenethyl isothiocyanate (PEITC, 1-10 mu M). From an in vivo perspective, gene expression and glutathione S-transferase (GST) polymorphisms were determined in PBMC obtained from a human intervention study in which subjects consumed 85 g WC per day for 8 weeks. The influence of WC consumption on gene expression was determined for detoxification enzymes such as superoxide dismutase 2 (SOD2) and glutathione peroxidase 1 (GPX1), whilst the SOD and GPX activities in red blood cells were also analysed with respect to GST genotypes. In vitro exposure of PBMC to WCE or PEITC (24 h) increased gene expression for both detoxification enzymes GPX1 (5.5-fold, 1 mu L/mL WCE, 3.7-fold 1 mu M PEITC) and SOD2 (12.1-fold, 10 mu L/mL WCE, 7.3-fold, 10 mu M PEITC), and increased SOD2 activity (1.9-fold, 10 mu L/mL WCE). The WC intervention had no significant effect on in vivo PBMC gene expression, as high individual variations were observed. However, a small but significant increase in GPX (p = 0.025) and SOD enzyme activity (p = 0.054) in red blood cells was observed in GSTM1*0, but not in GSTM1*1 individuals, whilst the GSTT1 genotype had no impact. The results indicate that WC is able to modulate the enzymes SOD and GPX in blood cells in vitro and in vivo, and suggest that the capacity of moderate intake of CV to induce detoxification is dependent in part on the GSTM1 genotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degeneration of dopaminergic neurons in the substantia nigra has been linked to the formation of the endogenous neurotoxin 5-S-cysteinyl-dopamine. Sulforaphane (SFN), an isothiocyanate derived from the corresponding precursor glucosinolate found in cruciferous vegetables has been observed to exert a range of biological activities in various cell populations. In this study, we show that SFN protects primary cortical neurons against 5-S-cysteinyl-dopamine induced neuronal injury. Pre-treatment of cortical neurons with SFN (0.01-1 microM) resulted in protection against 5-S-cysteinyl-dopamine-induced neurotoxicity, which peaked at 100 nM. This protection was observed to be mediated by the ability of SFN to modulate the extracellular signal-regulated kinase 1 and 2 and the activation of Kelch-like ECH-associated protein 1/NF-E2-related factor-2 leading to the increased expression and activity of glutathione-S-transferase (M1, M3 and M5), glutathione reductase, thioredoxin reductase and NAD(P)H oxidoreductase 1. These data suggest that SFN stimulates the NF-E2-related factor-2 pathway of antioxidant gene expression in neurons and may protect against neuronal injury relevant to the aetiology of Parkinson's disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sickle cell anemia (SCA) shows a pathophysiology that involves multiple changes in sickle cell erythrocytes, vaso-occlusive episodes, hemolysis, activation of inflammatory mediators, endothelial cell dysfunction, and oxidative stress. These events complicate treatment and culminate in the development of manifestations such as anemia, pain crises and multiorgan dysfunction. The aim of this study was to evaluate, in SCA patients, oxidative stress and antioxidant capacity markers, correlating them to treatment with hydroxyurea (HU), β-globin haplotypes and glutathione S-transferase polymorphisms (GSTT1, GSTM1 and GSTP1), in comparison to a control group (CG). The study groups were composed of 48 individuals without hemoglobinopathies (CG), SCA patients treated with HU [AF (+HU), N = 13] and untreated SCA patients [AF (-HU), N = 15], after informed consent. The groups were analyzed using cytological, electrophoretic, chromatographic and molecular methods and information from medical records. The GSTM1 and GSTT1 polymorphisms were determined by multiplex PCR, while the GSTP1 polymorphism by PCR-RFLP. Biochemical parameters were measured using spectrophotometric methods [TBARS, TEAC and catalase (CAT) and GST activities] and a chromatographic method [glutathione (GSH)]. The fetal Hb (Hb F) levels observed in the SCA (+HU) group (10.9%) confirmed the already well-described pharmacological effect of HU, but the SCA (-HU) group also had high Hb F levels (6.1%), which may have been influenced by genetic factors not targeted in this study. We found a higher frequency of the Bantu haplotype (48.2%), followed by the Benin (32.1%) and also Cameroon haplotypes, rare in our population, and 19.7% of atypical haplotypes. The presence of Bantu haplotype was related to higher lipid peroxidation levels in patients, but also, it conferred a differential response to HU treatment, raising Hb F levels in 52.6% (P = 0.03). The protective effect of Hb F was confirmed, because the increase in their levels resulted in a 41.3% decrease in lipid peroxidation levels (r = -0.74, P = 0.0156). The genotypic frequency of the GST polymorphisms observed was similar to that of other studies in the Brazilian population, and its association with biochemical markers revealed a significant difference only for the GSTP1 polymorphism, where patients with genotype V/V showed higher GSH and TEAC levels (P = 0.04 and P = 0.03, respectively) compared to patients with genotype I/I. The TBARS levels were about five to eight times higher in the SCA (+HU) and SCA (-HU) groups, respectively, compared to controls, and HU produced a 35.2% decrease in lipid peroxidation levels in the SCA (+HU) group (P < 0.0001). Moreover, the SCA (+HU) group showed higher TEAC levels when compared to CG (P = 0.002). We did not find any significant difference in GST activity between the groups studied (P = 0.76), but CAT activity was about 17 and 30% lower in SCA (+HU) and SCA (-HU) groups, respectively (P < 0.00001). Plasma GSH levels were ~2 times higher in SCA patients than in the control group (P = 0.0005) and showed a positive correlation with TBARS levels, confirming its antioxidant function. HU treatment contributed to higher CAT activity and TEAC levels and lower lipid peroxidation, and its pharmacological effect showed a “haplotype-dependent” response. These findings may contribute to elucidating the potential of HU in ameliorating oxidative stress in SCA subjects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The coffee components kahweol and cafestol (K/C) have been reported to protect the colon and other organs of the rat against the formation of DNA adducts by 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) and aflatoxin B1. PhIP is a cooked-food mutagen to which significant human exposure and a role in colon cancer etiology are attributed, and, interestingly, such cancers appear to develop at a lower rate in consumers of coffees with high amounts of K/C. Earlier studies in rodent liver have shown that a key role in the chemopreventive effect of K/C is likely to be due to the potential of these compounds to induce the detoxification of xenobiotics by glutathione transferase (GST) and to enhance the synthesis of the corresponding co-factor glutathione. However, mutagens like PhIP may also be detoxified by UDP-glucuronosyl transferase (UDPGT) for which data are lacking regarding a potential effect of K/C. Therefore, in the present study, we investigated the effect of K/C on UDPGT and, concomitantly, we studied overall GST and the pattern of individual GST classes, particularly GST-θ, which was not included in earlier experiments. In addition, we analyzed the organ-dependence of these potentially chemopreventive effects. K/C was fed to male F344 rats at 0.122% in the chow for 10 days. Enzyme activities in liver, kidney, lung, colon, salivary gland, pancreas, testis, heart and spleen were quantified using five characteristic substrates and the hepatic protein pattern of GST classes α, μ, and π was studied with affnity chromatography/HPLC. Our study showed that K/C is not only capable of increasing overall GST and GST classes α, μ, and π but also of enhancing UDGPT and GST-θ. All investigated K/C effects were strongest in liver and kidney, and some response was seen in lung and colon but none in the other organs. In summary, our results show that K/C treatment leads to a wide spectrum of increases in phase II detoxification enzymes. Notably, these effects occurred preferentially in the well perfused organs liver and kidney, which may thus not only contribute to local protection but also to anti-carcinogenesis in distant, less stimulated organs such as the colon.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sulfotransferases (SULTs) and UDP-glucuronosyltransferases (UGTs) are important detoxification enzymes and they contribute to bioavailability and elimination of many drugs. SULT1A3 is an extrahepatic enzyme responsible for the sulfonation of dopamine, which is often used as its probe substrate. A new method for analyzing dopamine-3-O-sulfate and dopamine-4-O-sulfate by high-performance liquid chromatography was developed and the enzyme kinetic parameters for their formation were determined using purified recombinant human SULT1A3. The results show that SULT1A3 strongly favors the 3-hydroxy group of dopamine, which indicates that it may be the major enzyme responsible for the difference between the circulating levels of dopamine sulfates in human blood. All 19 known human UGTs were expressed as recombinant enzymes in baculovirus infected insect cells and their activities toward dopamine and estradiol were studied. UGT1A10 was identified as the only UGT capable of dopamine glucuronidation at a substantial level. The results were supported by studies with human intestinal and liver microsomes. The affinity was low indicating that UGT1A10 is not an important enzyme in dopamine metabolism in vivo. Despite the low affinity, dopamine is a potential new probe substrate for UGT1A10 due to its selectivity. Dopamine was used to study the importance of phenylalanines 90 and 93 in UGT1A10. The results revealed distinct effects that are dependent on differences in the size of the side chain and on the differences in their position within the protein. Examination of twelve mutants revealed lower activity in all of them. However, the enzyme kinetic studies of four mutants showed that their affinities were similar to that of UGT1A10 suggesting that F90 and F93 are not directly involved in dopamine binding in the active site. The glucuronidation of β-estradiol and epiestradiol (α-estradiol) was studied to elucidate how the orientation of the 17-OH group affects conjugation at the 3-OH or the 17-OH of either diastereomer. The results show that there are clear differences in the regio- and stereoselectivities of UGTs. The most active isoforms were UGT1A10 and UGT2B7 demonstrating opposite regioselectivity. The stereoselectivities of UGT2Bs were more complex than those of UGT1As. The amino acid sequences of the human UGTs 1A9 and 1A10 are 93% identical, yet there are large differences in their activity and substrate selectivity. Several mutants were constructed to identify the residues responsible for the activity differences. The results revealed that the residues between Leu86 and Tyr176 of UGT1A9 determine the differences between UGT1A9 and UGT1A10. Phe117 of UGT1A9 participated in 1-naphthol binding and the residues at positions 152 and 169 contributed to the higher glucuronidation rates of UGT1A10. In summary, the results emphasize that the substrate selectivities, including regio- and stereoselectivities, of UGTs are complex and they are controlled by many amino acids rather than one critical residue.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many dietary factors have been associated with a decreased risk of developing cancer. One potential mechanism by which these factors, chemopreventors, protect against cancer may be via alteration of carcinogen metabolism. The broccoli constituent sulforaphane (1-isothiocyanate-4-methylsulinylbutane) (CH3-S0-(CH2)4-NCS) has been isolated as a potential inducer of phase II detoxification enzymes and also protects rodents against 9,10-dimethyl-1,2-benz[aJanthracene-induced mammary tumours. The ability of sulforaphane to also modulate phase I activation enzymes (cytochrome P450) (CYP450) was studied here. Sulforaphane was synthesised with an overall yield of 15%, essentially via 1-methylsulfinylphthalimidobutane, which was oxidised to the sulfoxide moiety. Deprotective removal of phthalimide yielded the amine, which was converted into sulforaphane by reaction with N,N'-thionocarbonyldiimidazole. Purity (95 %) was checked by 1H-NMR,13C-NMR and infrared and mass spectrometry.Sulforaphane was a competitive inhibitor of CYP2E1 in acetone-induced Sprague-Dawley rat microsomes (Ki 37.9 ± 4.5μM), as measured by the p-nitrophenol hydroxylase assay. Ethoxyresorufin deethylase activity (EROD), a measurement of CYP1A activity, was also inhibited by sulforaphane (100μM) but was not competitive, and a preincubation time-dependence was observed. In view of these results, the capacity of sulforaphane to inhibit N-nitrosodimethylamine (NDMA)-induced genotoxicity (CYP2E1-mediated) was studied using mouse liver activation systems. Sulforaphane (>0.8μM) inhibited the mutagenicity of NDMA (4.4 mg/plate) in Salmonella typhimurium strain TA100 after pre-incubation for 45 min with acetone-induced liver 9000 g supernatants from Balb/c mice. Unscheduled DNA synthesis induced by NDMA (33μ5 M) in mouse hepatocytes was also reduced by sulforaphane in a concentration-dependent manner (0.064-20μM). Sulforaphane was not genotoxic itself in any of these systems and cytotoxic only at high concentrations (>0.5 mM and > 40μM respectively). The ability of sulforaphane to modulate the orthologous human enzymes was studied using a human epithelial liver cell line (THLE) expressing individual human CYP450 isoenzymes. Using the Comet assay (a measurement of DNA strand breakage under alkaline conditions), NDMA (0.01-1μg/ml) and IQ (0.1-10μg/ml) were used to produce strand breaks in T5-2E1 cells (expressing human CYP2E1) and T5-1A2 cells (expressing human CYP1A2) respectively, however no response was observed in T5-neo cells (without CYP450 cDNA transfection). Sulforaphane inhibited both NDMA and IQ-induced DNA strand breakage in a concentration-dependent manner (0.1-10μM).The inhibition of metabolic activation as a basis for the antigenotoxic action of sulforaphane in these systems (bacteria, rodent hepatocytes and human cells) is further supported by the lack of this chemopreventor to influence NaN3 mutagenicity in S. typhimurium and H202-induced DNA strand breakage in T5-neo cells. These findings suggest that inhibition of CYP2E1 and CYP1A by sulforaphane may contribute to its chemoprotective potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Daikon and radish sprouts contain high levels of glucoraphenin, a glucosinolate which hydrolyses to form sulphoraphene. Sulphoraphene, like sulphoraphane from broccoli, is a potent inducer of phase 2 detoxification enzymes and consequently has potential anti-cancer action. Unlike broccoli however, daikon and radish do not possess epithiospecifier protein, a protein that inhibits conversion of glucosinolates to isothiocyanates, and consequently they may represent more suitable sources of phyto-chemicals with anti-cancer potential. Concentrations of glucoraphenin were highest in the seed, declining exponentially with sprout development. The rate of decline was observed to vary considerably between varieties of daikon and radish, with some varieties maintaining significantly high levels of glucoraphenin. Varieties maintaining a high level of glucoraphenin included 'Cherry Belle' and 'French Breakfast'.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemical nature of the hydrolysis products from the glucosinolate-myrosinase system depends on the presence or absence of supplementary proteins, such as epithiospecifier proteins (ESPs). ESPs (non-catalytic cofactors of myrosinase) promote the formation of epithionitriles from terminal alkenyl glucosinolates and as recent evidence suggests, simple nitriles at the expense of isothiocyanates. The ratio of ESP activity to myrosinase activity is crucial in determining the proportion of these nitriles produced on hydrolysis. Sulphoraphane, a major isothiocyanate produced in broccoli seedlings, has been found to be a potent inducer of phase 2 detoxification enzymes. However, ESP may also support the formation of the non-inductive sulphoraphane nitrile. Our objective was to monitor changes in ESP activity during the development of broccoli seedlings and link these activity changes with myrosinase activity, the level of terminal alkenyl glucosinolates and sulphoraphane nitrile formed. Here, for the first time, we show ESP activity increases up to day 2 after germination before decreasing again to seed activity levels at day 5. These activity changes paralleled changes in myrosinase activity and terminal alkenyl glucosinolate content. There is a significant relationship between ESP activity and the formation of sulforaphane nitrile in broccoli seedlings. The significance of these findings for the health benefits conferred by eating broccoli seedlings is briefly discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The presence of redox systems in microsomes of brown adipose tissue (BAT) in cold exposed rats was investigated and compared with liver. BAT microsomes showed high activity of lipid peroxidation measured both by the formation of malondialdehyde (MDA) and by oxygen uptake. NADH and NADPH dependent cytochrome c reductase activity were present in both BAT and liver microsomes. Aminopyrine demethylase and aniline hydroxylase activities, the characteristic detoxification enzymes in liver microsomes could not be detected in BAT microsomes. BAT minces showed very poor incorporation of [1-14C]acetate and [2-14C]-mevalonate in unsaponifiable lipid fraction compared to liver. Biosynthesis of cholesterol and ubiquinone, but not fatty acids, and the activity of 3-hydroxy-3-methyl glutaryl CoA reductase appear to be very low in BAT. Examination of difference spectra showed the presence of only cytochrome b 5 in BAT microsomes. In addition to the inability to detect the enzyme activities dependent on cytochrome P-450, a protein with the characteristic spectrum, molecular size in SDS-PAGE and interaction with antibodies in double diffusion test, also could not be detected in BAT microsomes. The high activity of lipid peroxidation in microsomes, being associated with large oxygen uptake and oxidation of NADPH, will also contribute to the energy dissipation as heat in BAT, considered important in thermogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellular polarity concerns the spatial asymmetric organization of cellular components and structures. Such organization is important not only for biological behavior at the individual cell level, but also for the 3D organization of tissues and organs in living organisms. Processes like cell migration and motility, asymmetric inheritance, and spatial organization of daughter cells in tissues are all dependent of cell polarity. Many of these processes are compromised during aging and cellular senescence. For example, permeability epithelium barriers are leakier during aging; elderly people have impaired vascular function and increased frequency of cancer, and asymmetrical inheritance is compromised in senescent cells, including stem cells. Here, we review the cellular regulation of polarity, as well as the signaling mechanisms and respective redox regulation of the pathways involved in defining cellular polarity. Emphasis will be put on the role of cytoskeleton and the AMP-activated protein kinase pathway. We also discuss how nutrients can affect polarity-dependent processes, both by direct exposure of the gastrointestinal epithelium to nutrients and by indirect effects elicited by the metabolism of nutrients, such as activation of antioxidant response and phase-II detoxification enzymes through the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In summary, cellular polarity emerges as a key process whose redox deregulation is hypothesized to have a central role in aging and cellular senescence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glutathione S-transferase (GST) is a family of enzymes involved in the detoxification of electrophilic compounds. Different classes of GST are expressed in various organs, such as liver, lungs, stomach and others. Expression of GST can be modulated by diet components and plant-derived compounds. The importance of controlling GST expression is twofold: increasing levels of GST are beneficial to prevent deleterious effects of toxic and carcinogenic compounds, while inhibition of GST in tumor cells may help overcoming tumor resistance to chemotherapy. A screening of 16 plants used in the Brazilian pharmacopoeia tested their effects on GST expression in hepatocytes and Jurkat (leukemia) T-cells. The methanol extracts of five plants inhibited GST expression in hepatocytes. Three plants significantly inhibited and four others induced GST expression in Jurkat cells. Among these, the extracts of Bauhinia forficata Link. (Leguminosae) and Cecropia pachystachya Trec. (Urticaceae) inhibited GST expression at relatively low concentrations. With the exception of B. forficata, all plants were cytotoxic when administered to Jurkat cells at high doses (1 mg/mL) and some extracts were considerably cytotoxic even at lower concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Xylella fastidiosa is an important pathogen bacterium transmitted by xylem-feedings leafhoppers that colonizes the xylem of plants and causes diseases on several important crops including citrus variegated chlorosis (CVC) in orange and lime trees. Glutathione-S-transferases (GST) form a group of multifunctional isoenzymes that catalyzes both glutathione (GSH)-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GSTs are the major detoxification enzymes found in the intracellular space and mainly in the cytosol from prokaryotes to mammals, and may be involved in the regulation of stress-activated signals by suppressing apoptosis signal-regulating kinase 1. In this study, we describe the cloning of the glutathione-S-transferase from X. fastidiosa into pET-28a(+) vector, its expression in Escherichia coli, purification and initial structural characterization. The purification of recombinant xfGST (rxfGST) to near homogeneity was achieved using affinity chromatography and size-exclusion chromatography (SEC). SEC demonstrated that rxfGST is a homodimer in solution. The secondary and tertiary structures of recombinant protein were analyzed by circular dichroism and fluorescence spectroscopy, respectively. The enzyme was assayed for activity and the results taken together indicated that rxfGST is a stable molecule, correctly folded, and highly active. Several members of the GST family have been extensively studied. However, xfGST is part of a less-studied subfamily which yet has not been structurally and biochemically characterized. In addition, these studies should provide a useful basis for future studies and biotechnological approaches of rxfGST. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Xylella fastidiosa is an important pathogen bacterium transmitted by xylem-feedings leafhoppers that colonizes the xylem of plants and causes diseases on several important crops including citrus variegated chlorosis (CVC) in orange and lime trees. Glutathione-S-transferases (GST) form a group of multifunctional isoenzymes that catalyzes both glutathione (GSH)-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GSTs are the major detoxification enzymes found in the intracellular space and mainly in the cytosol from prokaryotes to mammals, and may be involved in the regulation of stress-activated signals by suppressing apoptosis signal-regulating kinase 1. In this study, we describe the cloning of the glutathione-S-transferase from X. fastidiosa into pET-28a(+) vector, its expression in Escherichia coli, purification and initial structural characterization. The purification of recombinant xfGST (rxfGST) to near homogeneity was achieved using affinity chromatography and size-exclusion chromatography (SEC). SEC demonstrated that rxfGST is a homodimer in solution. The secondary and tertiary structures of recombinant protein were analyzed by circular dichroism and fluorescence spectroscopy, respectively. The enzyme was assayed for activity and the results taken together indicated that rxfGST is a stable molecule, correctly folded, and highly active. Several members of the GST family have been extensively studied. However, xfGST is part of a less-studied subfamily which yet has not been structurally and biochemically characterized. In addition, these studies should provide a useful basis for future studies and biotechnological approaches of rxfGST. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nrf2 is a member of the “cap ‘n’ collar” family of transcription factors. These transcription factors bind to the NF-E2 binding sites (GCTGAGTCA) that are essential for the regulation of erythroid-specific genes. Nrf2 is expressed in a wide range of tissues, many of which are sites of expression for phase 2 detoxification genes. Nrf2−/− mice are viable and have a normal phenotype under normal laboratory conditions. The NF-E2 binding site is a subset of the antioxidant response elements that have the sequence GCNNNGTCA. The antioxidant response elements are regulatory sequences found on promoters of several phase 2 detoxification genes that are inducible by xenobiotics and antioxidants. We report here that Nrf2−/− mice are extremely susceptible to the administration of the antioxidant butylated hydroxytoluene. With doses of butylated hydroxytoluene that are tolerated by wild-type mice, the Nrf2−/− mice succumb from acute respiratory distress syndrome. Gene expression studies show that the expression of several detoxification enzymes is altered in the Nrf2−/− mice. The Nrf2−/− mice may prove to be a good in vivo model for toxicological studies. As oxidative damage causes DNA breakage, these mice may also be useful for testing carcinogenic agents.